CRITICAL EXPONENTS OF PLANAR GRADIENT PERCOLATION By Pierre Nolin École
نویسنده
چکیده
We study gradient percolation for site percolation on the triangular lattice. This is a percolation model where the percolation probability depends linearly on the location of the site. We prove the results predicted by physicists for this model. More precisely, we describe the fluctuations of the interfaces around their (straight) scaling limits, and the expected and typical lengths of these interfaces. These results build on the recent results for critical percolation on this lattice by Smirnov, Lawler, Schramm and Werner, and on the scaling ideas developed by Kesten.
منابع مشابه
Near-critical percolation in two dimensions
We give a self-contained and detailed presentation of Kesten’s results that allow to relate critical and near-critical percolation on the triangular lattice. They constitute an important step in the derivation of the exponents describing the near-critical behavior of this model. For future use and reference, we also show how these results can be obtained in more general situations, and we state...
متن کاملAsymmetry of Near-critical Percolation Interfaces
A short general overview. The goal of the present paper is to study some aspects of two-dimensional percolation near its critical point. Recall that the mathematical understanding and description of the percolation phase transition in the plane has improved a lot during the last decade, thanks to two new main ingredients: the derivation of conformal invariance of critical percolation on the tri...
متن کاملPercolation on uniform infinite planar maps
We construct the uniform infinite planar map (UIPM), obtained as the n → ∞ local limit of planar maps with n edges, chosen uniformly at random. We then describe how the UIPM can be sampled using a “peeling” process, in a similar way as for uniform triangulations. This process allows us to prove that for bond and site percolation on the UIPM, the percolation thresholds are p c = 1/2 and p site c...
متن کاملPercolation on Random Triangulations and Stable Looptrees
We study site percolation on Angel & Schramm’s Uniform Infinite Planar Triangulation. We compute several critical and near-critical exponents, and describe the scaling limit of the boundary of large percolation clusters in all regimes (subcritical, critical and supercritical). We prove in particular that the scaling limit of the boundary of large critical percolation clusters is the random stab...
متن کاملLarge Scale Properties of the IIIC for 2D Percolation
We reinvestigate the 2D problem of the inhomogeneous incipient infinite cluster where, in an independent percolation model, the density decays to pc with an inverse power, λ, of the distance to the origin. Assuming the existence of critical exponents (as is known in the case of the triangular site lattice) if the power is less than 1/ν, with ν the correlation length exponent, we demonstrate an ...
متن کامل